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The investigation of Gill (1977) on the effects of a finite upstream depth upon 
frictionless flow through a rotating box-like channel has been extended to take into 
account a parabolic geometry. In addition to being more geophysically realistic, this 
type of topography with continuously sloping lateral boundaries has the advantage 
that it yields a unified solution. In contrast to the case of a rectangular channel, no 
separation of the geostrophically balanced downchannel flow from the sidewalls can 
take place. The resulting algebraic problem can be resolved either using an iterative 
technique or by the construction of perturbation series solutions. One of the most 
important results to emerge from the analysis is that the classical concept of hydraulic 
control is only applicable for a limited range of the parameters governing the problem. 
It is finally argued that this behaviour of the solutions is not due to the specific choice 
of geometry, but rather represents a common feature for all topographies characterized 
by a continuously sloping cross-stream bottom profile. 

1. Introduction 
Over the last few years there has been considerable interest in extending the 

framework of conventional hydraulic theory to also encompass the geophysically 
important effect of the rotation of the Earth. A major reason for this is that the deeper 
regions of the ocean are partitioned by submarine ridges into semiconnected basins 
and that recent field observations (cf. Hogg et al. 1982; Stalcup, Metcalf & Johnson 
1975) indicate that some type of hydraulic control may constrain the geostrophic flow 
of dense bottom water through the deepest passages between the various basins. 

Even though the effect of rotation upon the formation of hydraulic jumps had been 
considered previously by Houghton (1969), the first investigation to deal specifically 
with hydraulically critical rotating flow was reported in a paper by Stern (1972). A 
number of studies (cf. Whitehead, Leetma & Knox 1974; Stern 1974; Sambuco & 
Whitehead 1976) followed, which, in addition to formulating the problem in terms 
of a two-layer flow with a quiescent upper layer, made use of the geophysically 
somewhat unrealistic assumption of an infinite upstream depth. This disquieting 
feature of the models was redressed by Gill (1977), who allowed for a non-zero 
upstream potential vorticity due to a finite depth of the basin. (Interesting extensions 
of these latter results are due to Raed 1980, who examined inertial boundary currents, 
and to Hogg 1983, who considered a four-layer flow with application to deep-water 
conditions in the Vema Channel.) 

Gill focused his attention upon a box-like channel, which necessitates a two-regime 
treatment of the problem, dependent on whether the geostrophically balanced 
down-channel flow is separated from the sidewall or not. (Note that although the 
analysis due to Shen (1981) formally took into account the effects of a lateral bottom 
topography, the upstream depth was assumed infinite and furthermore a channel with 
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vertical sidewalls was used in the laboratory experiments.) However, as pointed out 
by Gill (1977), his formulation of the problem can in principle be extended to also 
deal with the case of a continuously sloping bottom (whereby no distinction can be 
made between the sidewalls and the bottom boundary of the channel), and this is 
precisely what will be attempted in the present investigation. 

In  52 the governing equations for the open-channel problem with a parabolic 
bottom profile will be discussed, and a set of transcendental equations for the points 
of intersection between the free surface of the fluid and the bottom will be derived. 
As will be shown in 553 and 4, these equations cannot only be manipulated to yield 
an implicit equation for a uniquely defined flow variable, but they can also be resolved 
by the construction of power series solutions, formally valid in the limit of a channel 
width much smaller than the Rossby radius of deformation. In the following section 
the results, and in particular the controlled-flow solutions, will be discussed from a 
physical standpoint with a certain emphasis on factors limiting the usefulness of the 
present approach. A direct comparison with the results of Gill, in addition to an 
outline of the prospects for future work in the field, is undertaken in the h a 1  section. 

2. Governing equations 
The stationary, shallow-water flow to be considered is of a homogeneous, inviscid 

fluid in a rotating channel of parabolic cross-sectional bottom profile with the 
y-direction downstream. The velocity components in the x- and y-directions are u and 
v respectively. Figure 1 shows the geometrical notation, where the reference level 
( z  = 0) is taken to be the highest elevation of the channel floor. The position of the 
bottom with regard to this level ( X  = -h(s,y)) is given by: 

h h Y )  = B(Y)-4Y)X2. (2.1) 
As is usual in hydraulics it will be assumed that all downstream variations of 
dynamical as well as topographical variables occur on a much larger scale than the 
width of the channel (a/ax % a/ay). The coordinates of the points of intersection 
between the free surface ( z  = 7) of the fluid (of total depth D = h + q )  and the 
boundary are denoted by x = -a and x = b. (In a two-layer formulation of the 
problem, z = 7 is the position of the interface between a lower layer of density p and 
a passive upper layer of density p - Ap.) 

By use of scaling arguments based on the assumption of small down-channel 
variations of the flow i t  can be demonstrated that the cross-stream component of the 
momentum equation is reduced to the geostrophic equation for v : 

f v = g - .  ar 
ax 

Here f is the Coriolis parameter and g, the acceleration due to gravity, is taken reduced 
(9’ = g Aplp) when considering the two-layer problem. A stream function Y is defined 
such that av av 

a Y  ’ ax DU = --. DW = -. Y(-a) = -%; Y(b) = $, 

where Q is the total transport through the channel. For an inviscid flow the potential 
vorticity is conserved along streamlines : 

av 

-- - (an  f + ,  

D 
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FIGURE 1.  Definitional sketch showing the geometrical features of the channel. 

If Dw is a characteristic upstream depth at points where the relative vorticity is zero, 
then the assumption that the potential vorticity G is uniform implies that G = f / D , .  
The Bernoulli function B( !P) is related to the potential vorticity by G = dB/dY and 
thus an integration yields 

B(!P) = -+K, 

where K is an as yet undetermined constant. Consequently the equation for the 
conservation of energy along a streamline becomes : 

f Y  
DW 

It is now postulated that the upstream basin has a rectangular cross-section and that 
it is very broad compared to A = (gD,)i/f, the Rossby radius of deformation based 
on the upstream potential vorticity, i.e. the depth D,. In this case the upstream flow 
will take place adjacent to the vertical boundaries, thereby leaving the interior of 
the fluid motionless, and the constant of integration K can be determined in a 
straightforward manner by applying (2.4) to a streamline Yj emanating from the 
quiescent interior of the upstream region. For this streamline, 17 = D,  -pmax, where 
p,,, is the elevation of the highest point in the channel ( z  = 0) relative to the 
upstream bottom level, and thus K = (D ,  -Pmax) g- f Iy,/D,. Bernoulli's equation 
assumes the following form : 
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Equations (2.1)-(2.3) yield an ordinary differential equation for 77 : 
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Using the boundary conditions D( -a) = D ( b )  = 0, the solution of this equation is 
found to be 

(Da+2aA2) [ sinh rib) - -sinh ( Z : a ) ] + D w + 2 a h 2 + a ~ 2 - ~ ,  - 
sinh (T) a+b 7 7 =  

whereby the velocity V(X) can be calculated from equation (2 .2) .  Bernoulli's equation 
(2 .5)  can now be evaluated at the points of intersection between the free surface and 
the solid boundary, yielding two implicit equations for the dependent variables a and 
b.  This set of equations is non-dimensionalized by introducing the following length 
and velocitv scales : 

This scaling satisfies continuity, Q = AD, V,, as well as the geostrophic relationship 
(2.2), AfV, = go,. The equations for a* = a/h and b* = b / h  turn out to be: 

("* '*) - 2a*)', (2.6 a) ( 2 + ~ )  tanh ~ 

1 a* + b* 
( !& - 8 )  - 5 (( 2 + r )  tanh (7) - 26*)'. (2.6 b )  

(For notational convenience, stars will henceforth be dropped.) The problem is 
governed by the following dimensionless quantities : 

Here A and rare geometrical parameters, the former being the non-dimensional height 
of the channel floor above the upstream level, whereas the latter is the second power 
of the dimensionless width of the channel. fiw is a non-dimensional measure of the 
upstream depth and specifies the distribution of the volume flux far upstream 
between the boundary layers adjacent to the sidewalls of the basin. (Observe that the 
three dimensional quantities D,, q, and Q necessary to characterize the upstream 
flow have been reduced to the two dimensionless parameters fiw and since the 
vertical lengthscale is based on the volume flux.) The governing equations are 
symmetric in (a,b),  and hence they can represent an overall flow in the positive as 
well as negative y-direction. In what follows we shall, however, be solely concerned 
with a total transport in the direction of the positive y-axis, i.e. b > a. 

Since equations (2 .6a ,  b )  are transcendental as well as implicit, the most straight- 
forward method of solution proved to be an iterative procedure, the results of which 
will be summarized in the next section. However, as will be shown in $4, it is also 
possible to construct explicit analytical solutions to the problem, based upon 
perturbation expansions valid in the limit of small r .  

Note finally that, in view of the forthcoming representation of the solutions, it 
proves convenient to express the results in terms of a uniquely defined and physically 
meaningful flow variable, which is taken to be the cross-sectional area A occupied 
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by the flow. By integrating the total depth D cross-stream and making use of the 
difference between equation ( 2 . 6 ~ )  and (2 .6b) ,  it is found that: 

A = r[B,(b-a)]-l ,  

where A has been non-dimensionalized with respect to AD,. 

3. Iterative solution 
Subtracting ( 2 . 6 ~ )  from (2.6b) one obtains: 

B2, (2+r )  ( ( a + b ) - 2  tanh 

Insertion of this expression in the sum of the two governing transcendental equations 
results in an implicit relationship for (a + b) : 

( 2 + r )  ( ( a + b ) - 2  tanh(q)>8 [ (2+r) (a+b) '+4r2  

+ 2(2 + r)' tanh' ( a i b ) - 4 ( a + b )  - ( 2 + r )  tanh (.ib)]+(&y - = 0, (3.2) 

which is solved numerically using for instance the secant method. Thus (a + b) can 
be determined for prescribed values of !&, B,, r ,  and A ,  whereafter use of equation 
(3.1) yields A and (a, b). The numerical results reported in this section are for the case 
of = i. This corresponds to a situation with the flow in the upstream basin being 
concentrated in a unidirectional boundary layer adjacent to the left bank relative to 
the direction of the overall flow. (For a detailed justification of this particular choice 
of upstream conditions cf. Gill 1977.) Note furthermore that the entire regime 
-$ < !& < +t is one of no upstream flow reversals. 

Figure 2 pertains to the case of a fixed value of A (here A = 0), i.e. the level of 
the channel floor is unchanged downstream, whereas the degree of horizontal 
contraction of the passage, as measured by the parameter r ,  is vaned. The results 
in terms of a rescaled cross-sectional area A / &  versus loglor are shown for various 
values of B,. The graph demonstrates that, given Boo, the solution of (3.2) consists 
of two branches which emerge for a certain value of r .  In  a similar fashion, but for 
a fixed value of r (here r = l) ,  figure 3 shows A/..' versus A/B,. This latter variable 
is the ratio of the height of the channel floor above the upstream level to the upstream 
depth D,. The degree of constriction encountered by the flow is in this case directly 
proportional to A/B,, whereas in figure 2 it has an inverse relationship to the 
magnitude of r,  hence the mirrored quality of the two graphs. 

Even though a discussion of the physical basis of these results is deferred until $5, 
an interpretation of the graphs, conforming to the maximization principle of 
non-rotating hydraulics, can be formulated as follows. Let the dimensional upstream 
depth D, be prescribed as well as the geometrical parameter r* (or A*)  characterizing 
the narrowest (or most shallow) section of the channel. Then B , ( r * ~ d * ) ,  the 
magnitude of 6, associated with the solution curve which has its branch-point a t  
this particular value r* (or A*), will represent the largest possible transport, 
Q,,, = (D,/b,(r* A A*))' g/f, through the channel under the dynamical constraints 
outlined in the previous section. It is evident from figures 2 and 3 that once the 
dimensional upstream depth has been specified, all other possible solutions to the 
problem correspond to lower transports for the pertinent value of the geometrical 
parameter. 
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FIQURE 2. A / &  versus loglor for various values of B ,  when '& = 4 and A/Bm = 0. The dashed 
line indicates the position of the branch-point. 

By examining the properties of a long-wave disturbance on the flow, a slightly 
non-standard Froude number can be defined as F = V/(V-c), where 
V = t(v( -a )+v (b ) )  and c is the celerity of the long-wave disturbance. This weak 
definition of the average velocity I? is a prerequisite for the derivation of an explicit 
expression for F. Note, however, that, for the parabolic bottom topography considered 
here, conventional averaging proves to be equivalent to the weak variety, i.e. 

f (v (  -a)  + v(b))  = - j b  v(x)dx. 
(a+b) -a 

By assuming a down-channel scale of the disturbances much larger than the 
cross-stream scale, yet small with regard to the lengthscale of the downstream 
variations of the topography, and furthermore positing an unchanged potential 
vorticity of the disturbed flow (cf. Gill 1977), the following expression for F can be 
derived : 

F2 = (%y ( 2 + r ) e ( ( a + b ) - 2  tanh r i b ) ) P [ ( ( a + b ) - ( 2 + r )  - tanh 

+ 2r(a+ b)  coth (a+ b )  - 2r- r(2 + r )  tanha ( 3 3 .  - (3.3) 

From hydraulic theory it is not surprising that the branch-points of figures 2 and 
3 prove to be characterized by F = 1, whereas F < 1 and F > 1 for the upper and 
lower branches respectively of the solution curves, a state of affairs that will be 
considered in greater detail in $5. 

To conclude this section on the formal aspects of the solution to the problem it 
might be remarked that an alternative method, requiring no physical insight, of 
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FIQURE 3. As in figure 2, but for Alrf versus A/Bm when % = ?j and r = 1 .  

characterizing the point where the two solution branches coalesce, is to recognize that 
from (3.2), (u+b)  is implicitly determined, %(a+b,d,r,B,, q) = 0. Thus, from the 
implicit function differentiation theorem, it is found that the unique solution is 
distinguished by : 

aY(a+b,d,r ,B, ,  9) = o .  
a(u+ b )  

This expression is, as indeed can be verified by some algebraic manipulation, precisely 
equivalent to (3.3) with F = I .  

4. Perturbative solution 
From figure 2 it is evident that given 6,, any attempt to expand the solutions 

of equations (2.6a, b) in powers of r will be futile since the problem has no real roots 
for r smaller than the value associated with the branch-point. The formal source of 
this failure of the conventional technique can be traced to the symmetry-breaking 
terms r( !& +;)/& of the governing equations, which, for expansions of a and b in 
any fractional power of r ,  give rise to inconsistent results already to lowest order. 

11 FLM 167 
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The problem, however, becomes amenable to perturbation analysis by observing 
that d,, which hitherto has been regarded as autonomous, is dependent upon the 
Coriolis parameter f and hence can be rescaled invoking r : 

B-,“ = p&. 

Use of this relationship in conjunction with the transformed variables 
(a’, b’) = r-t(a, b) yields a regular perturbation problem well adapted for an expansion 
in powers of ri, a quantity which for convenience will be denoted p .  Furthermore, 
by recognizing that A/d,, the ratio of the threshold height to the upstream depth, 
is independent o f f  and consequently not affected by the rescaling above, the 
governing equations for the new variables (a’, b’) assume the following form: 

2p2d = 2p2 (1 - L ) - 2 p 3 p (  ++) - ((p2 + 2 )  [C,(a + b )  + C&(a+b)3 + . . .] + 242, 
D m  

( 4 . 1 ~ )  

2p2b2 = 2p2 ( 1 -- ;) - 2 p 3 p( !&-# - (($I2+ 2 )  [C,(a+b) + C3p2(a+b)3+.  . .] +2b)2. 

(4.1 b )  

Here the primes have been dropped and the hyperbolic tangent has been expanded 
in a MacLaurin series, convergent for la + bl < n : 

B ,  is the nth Bernoulli number, readily generated from : 
00 

x/(e”- 1) = Bnxn/n! .  
n-o 

By inserting the solutions in power series form, 
m 

(a,  b, = 2 (ak,bk)pk, 
k-0 

and ordering in powers of p ,  the governing equations can be resolved to any desired 
order. Experience has, however, revealed that for practical purposes it is most 
convenient to base the ordering procedure on the sum of and difference between 
equations ( 4 . 1 ~ )  and (4.1 b ) ,  and in what follows the results to order N derived from 
these linear combinations of the governing equations will be designated a ( N )  and S(N) 
respectively. The equations obtained for N < 5 assume the following form : 

S(0): -, S ( 1 ) :  -, S(2):  -, 

cT(0): a, = bo, c r ( 1 ) :  -, 4 2 ) :  (a,-b,)2 = 2 1 - - -  A a,)? ( 6, 
S(3): 2p+$(a,-bl)  ( ~ , + b , ) ~  = 0, 

4 3 ) :  p ~ + a , ( a , + b , ) + ( a , - b l ) ( a 2 - b 2 )  = 0, 

S(4) : (a, - b,) 8 4  + 1 2 4 ( ~ ,  - b,)  (a, + b, )  = 0, 

~ ( 4 )  : U: + b! + 2aO(a2 + b2) + (a2 - b2)2 + 2(a1 - b,) (a3 - b3) + 
- 3 2 ~ :  C3 + 2 5 6 ~ :  C: = 0, 
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FIGURE 4. For various values of A / B m ,  at versus p. The unique magnitude of a, for the 
maximum value of p for each AIDm is shown as a dashed line. 

(The general recursive formulae for a ( N )  and S(N),  N 2 6, are stated in the Appendix.) 
Use of S(3) and a(2) yields an equation for a, in terms of A / B w  and p :  

a:-(1--)a:+&2 A =o.  
B W  

Since this equation is symmetric in a, (corresponding to flow in the positive or 
negative y-direction), figure 4 shows the real roots a: versus p for various values of 
the topographical parameter A / B m .  (Complex-conjugate roots have been omitted 
since they are of no physical interest.) From the graph it is evident that the real 

11-2 
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solutions in general are bi-valued, with each of the a,, serving as the ‘seed’ for one 
of the solution branches of figures 2 and 3. An algebraic calculation shows that these 
roots a, coalesce for pi = ($ (1 -->, A 

D m  
yielding a: = 3(1- A/Bm)/4. The position of this branch-point is shown in the 
diagram as a dashed line. These unique solutions correspond to controlled-flow 
situations in the non-rotating analogue to the problem a t  hand. Most easily this can 
be perceived by rewriting (4.2) in dimensional form: 

Q = (g)’ ( D ,  -,8)2, 

which proves to be precisely the expression obtained by maximizing the total flow 
in a non-rotating parabolic channel under the constraints of volume and energy 
conservation. 

The values of a, having been determined, solutions valid to any order can be 
generated. The overall structure of the recursive formulae is such that once 6 ( N ) ,  cr(N), 
and 6(N+ 1 )  are known, the problem is fully resolved to order N-2 in addition to 
providing (aN-l-bN--l) ,  a useful quantity in view of the flow variable A defined in 
52. For small values of the expansion parameter even results of comparatively low 
order can be useful, as illustrated in figure 5. In  a similar manner as in figure 2, but 
here for A versus r ,  this graph shows the region in the immediate vicinity of the 
branch-point for = 8, where the solid line represents the solution calculated using 
the methods of the preceding section. The dotted, dashed and dotdashed lines show 
the truncated series solutions consisting of four, seven and ten terms respectively. 
The perturbation expansions have been computed locally in r for ,u = 1/(8ri)  and the 
two solution branches, each corresponding to one of the values of a,, are clearly in 
evidence. The diagram moreover indicates that for r smaller than the value associated 
with the branch-point the perturbation series diverge, whereas for larger values of 
r they converge towards the proper solutions. This behaviour, arising from the 
non-uniform convergence of the series due to the parameter p, in essence constitutes 
the mechanism whereby the perturbation expansion can cope with the previously 
noted circumstance that real solutions to the problem only emerge for a finite value 
of r .  

When discussing the overall applicability of the perturbation expansions derived 
here, the convergence of these power series in r should be formally investigated for 
a fixed value of the parameter p = l/(& d). This quantity was, however, introduced 
solely with the aim of regularizing the problem, and thus in itself lacks physical 
interest except when considered in conjunction with a fixed value of the expansion 
parameter r .  Since we are primarily interested in the series for computational 
purposes, an operational ‘definition’ of the radius of convergence as regards r was 
adopted, based upon whether or not the series expansions of the two solution branches 
converged for a fixed value of Bm. 

Inasmuch as the power series proved to converge for the entire range of parameter 
values considered in figure 3, interest was directed towards the situation depicted in 
figure 2 (Bm and r varying for a fixed value of A ) ,  and in particular on whether the 
branch-points could be accurately represented as the intersection between the two 
branches of the series solutions. (This choice of focal point for the convergence 
investigations was dictated partly by the branch-point being of great physical 
interest, partly by experience having revealed that a breakdown of the series 
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FIGURE 5. The iterative solution (solid line) near the branch-point for 80, = 8, % = +, and 
A/Bm = 0. The dotted, dashed and dot-dashed lines show the results from four-, seven- and ten-term 
power series approximations respectively. 

expansions for a fixed value of 6, is first signalled here.) It was found that for 
Bw > 1.7 (corresponding to small values of the expansion parameter r since this latter 
quantity for the branch-point is inversely proportional to the magnitude of Bw as 
evidenced by figure 2), an accuracy varying between ten and four places was obtained 
when the series were truncated after 51 terms. For 6, = 1.6 ( r  = 1.98) the convergence 
shows signs of faltering, with the 51-term series only yielding two correct digits, and 
for 6, = 1.55 the series solutions diverge. 

It has, however, been found that by use of Pad6 approximations the domains of 
validity of the power series under consideration here can be extended beyond their 
‘radii of convergence’ for fixed values of 6,. By recasting the fiftieth-order series 
polynomials for 6, = 1.55, 1.525, and 1.5 (corresponding to branch-point values of 
r equal to 3.16,4.49, and 6.73 respectively) in the form of rational fractions, the point 
of intersection between the two solution branches could be determined with two-place 
accuracy from the diagonal [25, 251 Pad6 approximations. In a strict sense it is not 
meaningful to attempt to relate the accuracy of these results to the magnitude of 
the expansion variable r since the convergence of the perturbation series is non- 
uniform. From the standpoint of applications it can nevertheless be worthwhile to 
record that the relative error, although remaining of the order of 1 yo, increased for 
larger branch-point values of r .  
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It may furthermore be noted that diagnostic computations indicate that, at least 
for the range of parameters considered here, i t  is not the radius of convergence of 
the power-series representation of the hyperbolic tangent (limited by a singularity 
on the real r-axis) which imposes the bounds on the applicability of the perturbation 
expansions outlined above. This conjecture, based upon purely numerical investiga- 
tions, is further borne out by the neither fixed nor alternating sign patterns of the 
perturbation series, which indicate that their radii of convergence are determined by 
pairs of singularities at conjugate points in the complex r-plane (cf. Van Dyke 1974). 

To conclude this section i t  may be appropriate to once again emphasize the 
interesting fact that i t  has proved possible to resolve by perturbation analysis an 
algebraic problem displaying singular characteristics in that real solutions are 
non-existent for small values of the perturbative quantity. This has been accomplished 
by a parameter rescaling invoking the expansion variable, whereby the resulting 
non-uniform convergence of the perturbation series does justice to precisely this 
feature of the solutions. 

5. Results 
Following established hydraulic procedure, the branch-points of figures 2 and 3 can 

tentatively be identified with controlled-flow situations yielding the maximum 
discharge for given upstream conditions and characterized by a Froude number of 
unity. The upper and lower solution branches represent sub- and supercritical flows 
respectively. For the parabolic bottom topography, the position of the control section 
is, for a given upstream depth, determined by the geometrical parameters r and A .  
From the point of view of the dynamics of the problem, the sole constraint on these 
latter quantities is that they be slowly varying in the downstream direction. Thus the 
overall conditions in any reasonably smooth channel of fundamentally parabolic 
cross-section can be calculated by prescribing r and A as functions of the downchannel 
coordinate and applying the methods of solution discussed in the preceding sections. 

For the analogous problem when the channel has a rectangular cross-section it has 
been shown by Gill (1977) that the branch-point solution always represents a 
unidirectional velocity field. Consonant with the general notion of controlled flow, 
downstream conditions in this case neither through advection proper nor a long-wave 
signal can exert any influence upstream. When, however, as always in nature as well 
as for this investigation, the flow is delimited horizontally by a continuously sloping 
bottom, a radically different situation emerges, since in this case a branch-point 
solution is not necessarily associated with unidirectional flow even though the Froude 
number is equal to one. A qualitative insight into this phenomenon can be reached 
by examining (2.3), from which it is recognized that for the depth D approaching zero, 
as is the case at  the horizontal extremes of the flow when the sidewalls are not vertical, 
the cross-stream gradient of the downchannel velocity w(x) must be negative in order 
to conserve the prescribed upstream potential vorticity. Thus, for a sufficiently large, 
but finite, slope of the bottom where i t  intersects the free surface, the velocity may 
have to take recourse to a change of direction in order to fulfil one of the basic 
constraints of the theory. Should this be the case for the branch-point solution, then 
streamlines originating from the down-channel reservoir will pass the ' control 
section', a situation incompatible with the concept of an a priori specified upstream 
state. Hence it is not physically meaningful to invoke the notion of a controlled flow 
when the branch-point solution is associated with a flow reversal, and i t  furthermore 
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FIGURE 6. Curves yielding the specific combinations of branch-point values of r and A/Bm for which 
the velocity on the right-hand side of the channel becomes negative. The results are shown for 
various values of $. 

becomes of interest to establish criteria for the existence of a control section in the 
classical sense. 

In  the case of a parabolic bottom profile it can be proved for the branch-point 
solutions that if a reversal of the flow does take place, this must occur adjacent to 
the right-hand boundary of the channel. (This formal property of the velocity field 
is established by first disproving the existence of an interior flow reversal, i.e. showing 
that there is no point xo E ( -a ,  13) such that the velocity w(x) has a non-positive proper 
minimum characterized by w'(zo) = 0 and w"(x,,) > 0. From (2.3) it is recognized that 
w'( -a )  < 0, and consequently also a flow situation with v( -a) < 0 is excluded.) It 
may be noted that this state of affairs conforms to intuitive expectations in that the 
geostrophically induced asymmetry of the free surface leads to the largest values 
of the bottom slope being encountered by the flow on the extreme right-hand side 
of the channel. The construction of a diagram, delimiting the parameter regimes 
where the branch-point solutions to the present problem correspond to controlled 
flows in the classical sense, becomes a straightforward matter, and the results are 
summarized in figure 6. Shown here is a parameter space constituted by the 
branch-point values of r and A/D,.  For various !& E [ -!j, + 3, i.e. for a uni-directional 
upstream flow, the plane is partitioned into a lower, left-hand region where the 
branch-point solutions do not admit any flow reversals (w(I3) 2 0), as well as a clime 
beyond the reaches where the established concept of a control section makes sense 
(w(I3) < 0). Note that the graph conveys no information about d, for the branch-point 
solutions, it  only demonstrates whether or not a physically meaningful controlled-flow 
solution can be realized. Inasmuch as A/d, -+ 1 represents the limiting case of an 
infinite upstream depth it is not surprising that the separating curves of the graph 
coalesce here, since in this case the upstream potential vorticity is zero and a 
degenerate problem, independent of $, arises. 
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The qualitative traits of figure 6 in the limit of large r can be understood in terms 
of the asymptotic behaviour of the governing equations (2.6a, b). By transforming 
the dependent variables, (a, b) = &(a’, b’), and making use of the one-sided MacLaurin 
expansion, 

tanh([@(a’ + bf ) ] - l  ) = 1 + 0 x ([+d(a’ + b’)]-l)l 

+Ox ( [ $ ( ~ ’ + b ’ ) ] - ~ ) ~ +  ... as [@(a’+b’)]-’++O, 

it is found that in the limit of r approaching infinity the equations decouple with the 
following analytical solutions for the original variables : 

(5 . la)  

(5.lb) 

Here the square root in the expression for a is taken positive for the subcritical 
solution branch, negative in the case of a supercritical flow. (Note that the choice 
of expanding the hyperbolic tangent for a large positive value of the argument has 
reduced the problem to one of an overall flow in the positive y-direction.) The 
formulae above for a and b demonstrate that, given a large enough value of r ,  the 
branch-point is characterized by 

in which case b = 1 +r/( l3 , (2  + r ) i ) .  Using the expansion above, the limiting form of 
the velocity distribution can also be calculated and it is recognized that 

8 , ( 2 b  - 2 - r )  
r 

v (b )  = (5.3) 

Hence the stagnation condition v ( b )  = 0 is found to be equivalent to b = 1 +?jr, and 
under these circumstances a critical flow for large r is distinguished by 
8, = 2/(2 + r)t .  Insertion of this expression in the criterion (5.2) yields : 

( ( gdm)) r2(!&+2)+2r(%++)+r 2-4 l - ~  + 4  = 0. 

This equation, valid for r approaching infinity, relates !&, A/B,, and r for the 
branch-point solutions under the auxiliary constraint that v(b) = 0, i.e. zero velocity 
on the right-hand side of the channel. By regarding r as the dependent variable and 
utilizing the fundamental prerequisite that this quantity be infinitely large as a 
consistency condition it is seen that % = - + implies A/8, = ifor r +- 00. Furthermore 
it is recognized that, given a large enough fixed value of r ,  A / 8 ,  = 0 can only be 
realized for % decreasing close enough to -f. Both of these features are clearly in 
evidence in figure 6, the former as the asymptotic behaviour of the separating curve 
for % = - t ,  the latter as the growing magnitude of the intercept between the 
delimiting curve and the abscissa for decreasing %. 

Since it has been argued elsewhere (Gill 1977) that !& > 0 may correspond to the 
geophysically most appropriate upstream flow distribution, the results summarized 
in figure 6 appear to indicate that, for the case of a parabolic bottom topography, 
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the applicability of orthodox hydraulic criteria for determining flow rates or upstream 
heights is mainly limited to narrow channels, i.e. small values of r .  However beneficial 
this state of affairs may be for the utility of the perturbation expansions derived in 
the previous section, it nevertheless raises important questions concerning the 
aptness of the present theoretical framework for practical investigations. A discussion 
of this aspect of the problem is, however, deferred until the next section. 

The investigation has so far almost entirely limited itself to an examination of the 
branch-point solutions. Since these, as previously discussed, determine the maximum 
discharge for a given upstream situation, they are undoubtedly of major interest from 
a theoretical as well as a practical standpoint. Care should, however, be taken to note 
also that the overall solutions as exemplified in figures 2 and 3 offer a general 
description of inviscid flow in a channel of varying topography under the assumption 
that the dynamical upstream parameters Bm and can be prescribed. It is 
furthermore important to emphasize that within this broader context, the occurrence 
of non-critical reversals of the flow can be interpreted in terms of blocking (cf. Rsed 
1980). 

The problem treated by Rsed differs from the one a t  hand in that he studied forced 
flows and moreover limited his attention to boundary currents with particular 
emphasis on how variations of the topography give rise to blocking. The somewhat 
different upstream conditions notwithstanding, i t  appears as though certain of the 
phenomena examined by Rsed have counterparts within the framework of the 
present investigation. Hence it may be noted that for the general case of a very broad 
channel discussed above, there exists a parameter regime such that the supercritical 
branch of the limiting solutions (5 . la ,  b) ,  is distinguished by the free surface having 
lost contact with the left-hand bank of the channel, i.e. a < 0. In these particular 
cases the supercritical channel flow assumes the characteristics of a boundary current 
subject to a slightly more complex bottom topography than the linear lateral slope 
considered by Rsed in his special case when irregularities of the coastline are 
neglected. Taking advantage of formula (5.3) for the velocity on the right-hand side 
of the channel, it can furthermore be demonstrated that both blocked and 
unidirectional supercritical flow can occur within the parameter range where a < 0. 
Even though these features of the solutions (5 . la ,  b)  have obvious counterparts 
within Rcled’s work, it must, however, be kept in mind that only a minor portion 
of his results can be reproduced by the present theory in the extreme of a very broad 
channel. It is, for instance, evident from expression ( 5 . 1 ~ )  that both the controlled 
and subcritical limiting solutions are invariably characterized by a > 0, a situation 
which precludes the existence of boundary currents in these cases. 

6. Discussion 
The aim of this study has been to extend the results of Gill (1977), valid for a 

rectangular geometry, to also encompass conditions in channels with continuously 
sloping side boundaries. This has proved feasible, and a unified mathematical 
treatment of the problem has been achieved. For a parabolic bottom profile it has 
been shown that the resulting algebraic problem can be resolved either using an 
iterative procedure or with a perturbation expansion. 

One of the interesting conclusions which could be drawn from the calculations was 
that the possibility of resolving the discharge problem in terms of a controlled flow 
is somewhat limited in the case of a parabolic topography due to the vanishing depth 
of the fluid at the lateral boundaries. Nevertheless, for certain parameter regimes and 
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FIQURE 7. Qp/Qr, the ratio of the maximum flows in parabolic and rectangular channels, 
versus the area A for various values of the sill height A / D , .  

in particular for narrow constrictions, the notion of hydraulic control can serve as 
a useful tool for determining extremal flow properties. Since a parabolic cross-section 
is almost invariably a better approximation to  conditions in nature than a rectangular 
one, it is of some interest to  compare the controlled flow results derived here with 
those for the rectangular geometry. 

An important difference between the two types of channel is that in the parabolic 
case the width of the flow is a dynamically determined variable, whereas for the 
rectangular geometry it can be regarded as prescribed. A comparison between the 
maximum flow rates for the two topographies has hence been undertaken for equal 
values of the cross-sectional area occupied by the flow. (This specific choice of 
comparative standard has the advantage that i t  eliminates the element of subjectivity 
associated with assigning a parabolic geometry with two degrees of freedom to a 
rectangular channel of given width.) For = 4, figure 7 shows Qp/Q,, the ratio of 
the maximum flows in a parabolic and a rectangular channel respectively, versus the 
area A occupied by the flow for various values of A / f i , .  All the curves start from 
a value of the cross-sectional area corresponding somewhat arbitrarily to a rectangular 
channel width of four hundredths of a Rossby radius. For A/Bm = 0.4, 0.6 and 0.8 
the results are not shown beyond the point where the area represents a flow separated 
from the left-hand wall of the rectangular channel, since in this case the width of the 
channel is no longer relevant for the problem, which hence assumes the characteristics 
generally associated with inertial boundary currents (cf. Rned 1980). I n  a similar 
fashion the emergence of bi-directional flow associated with the branch-point 
solutions for a parabolic channel has been used as a termination criterion for A/Bm 
equal to  0 and 0.2. 

The overall results of the comparison, summarized in figure 7, indicate that for 
almost every situation, a rectangular channel yields the larger maximum flow. The 
difference is most pronounced for small areas and low sills, in which cases these flow 
rates can be up to  five times larger than those for controlled flow in a parabolic 
channel. 
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The present investigation pertains to the somewhat specific case of a parabolic 
cross-sectional bottom profile of the channel. Nevertheless, the result indicating a 
limited parameter range compatible with hydraulic control in the established sense 
is undoubtedly generalizable to any topography with a continuously sloping bottom ; 
this since the vanishing depth of the fluid at the horizontal extremes of the flow is 
a generic feature of such a geometry. From the standpoint of applying the present 
work to observations of strait flows in nature, where it is frequently conjectured that 
hydraulic control does occur, these restrictions may appear somewhat discouraging. 
(Not least does this holds true for the fact that the upstream conditions yielding the 
largest range of admissible geometrical parameters do not coincide with those 
postulated as being the most geophysically relevant ones.) It is, however, advisable 
to keep in mind that in any practical realization frictional effects can be expected 
to play an important role in regions of vanishing fluid depth. Thus it cannot be ruled 
out that in nature some type of quasi-inviscid control is established, even under 
conditions which, according to the strictly inviscid theory above, are only compatible 
with branch-points solutions involving flow reversals. 

On might consider invoking friction in the formal treatment of the problem so as 
to ease the above-mentioned parameter restrictions. This course of action is, however, 
somewhat unattractive since it would not only constitute a violation of one of the 
fundamental tenets of hydraulic theory, but also give rise to an entirely different and 
more complex type of mathematical problem than the one examined here. With an 
eye to the future work it may thus be appropriate to conclude by noting that one 
way of extending the usefulness of the present theory appears to be through the 
introduction of a non-constant prescribed upstream potential vorticity. Hereby it 
should hopefully prove possible to realize unidirectional critical flow over the entire 
range of parameter values. 
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Here d ( j ,  k) and @(j, k) denote the coefficients of@ in the expansions of (a- b)  (a + b)k 
and (a+ b)k respectively. Q ,  the summation limit, is the integer part of $N multiplied 
by two. The formulae are valid for N 2 6 .  
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